Facing Uncertainty in Data Analysis: Ensuring Data and Information Comparability

Bill Ingersoll
Navy Quality and Accreditation Office
843-764-7337
DSN: 794-7337
ingersollws@navsea.navy.mil
www.navylabs.navy.mil

Discussion Topics

- Environmental Decision Quality
- Data Quality Comparability Issues
- Estimating Uncertainty for Quantitative Data
 - All Quantitative Measurements
 Must Have an Associated
 Estimation of Uncertainty
- Managing Decision Uncertainty for Qualitative Data
 - Estimated and Censored Data

Environmental Decision Quality

- To Make the Right Environmental Decisions Requires Understanding the Quality of the Data
- Data Comparability is an Important Component in Data Quality
- Ensuring Data Comparability Requires Estimating and Minimizing Analytical Measurement Uncertainty

Data Comparability Issues

- Federal and State Spend > \$1 Billion/year to Monitor Water Quality
- Problems with Data Quality Consistency
- Difficult to Share Data Between Agencies Because of Data Quality Issues
- Information About the Data Quality is Not Readily Available

Advantages of Data Quality Comparability

- Integration of Data From Different Study Sources
- Collection of Data of Know Quality
- Collaborative Monitoring
 Information for Decision Making

Example of Data Quality Comparability

- Comparability of Data
 - Study A Result: 10 mg/L
 - Study B Result: 10 mg/L
 - Study C Result: ≤ 20 mg/L

Example of Data Quality Comparability

- Comparability Without Estimated Uncertainty
 - Study A Result: 10 mg/L
 - Study B Result: 10 mg/L
 - Study C Result: ≤ 20 mg/L

- Comparability Using Estimated Uncertainty
 - Study A Result: 10 +/- 2 mg/L
 - Study B Result: 10 +/- 10 mg/L
 - Study C Result: ≤ 20 mg/L

What Data Are Comparable in Quality?

- Comparability Without Estimated Uncertainty
 - Study A result: 10 mg/L
 - Study B result: 10 mg/L
 - Study C result: ≤ 20 mg/L

- Comparability Using Estimated Uncertainty
 - Study A result: 10 +/- 2 mg/L
 - Study B result: 10 +/- 10 mg/L
 - Study C result: ≤ 20 mg/L

Data Quality Decision Error 1

- Water Quality Criteria = 100 ppb
- Measurement = 70 ppb
- Will the Correct Decision be Made?
- Yes, If X = 70 ± 20 ppb (50 90 ppb)
- Maybe Not, If X = 70 ± 40 ppb (30 − 110 ppb)

Accounting for Data Uncertainty in Decision Making

$$\left[\frac{Measurement \pm \frac{t \times \sigma_{Total_Study}}{N^{1/2}} \right]$$

$$\sigma_{Total_Study}^2 = \sigma_{Site}^2 + \sigma_{Sampling}^2 + \sigma_{Testing}^2$$

Conceptual Model For Estimating Uncertainty

Total Study Uncertainty, [™]S

Site Variability, SS

Sampling and Testing Variability, AS

$$TS^2 = SS^2 + AS^2$$

$$^{T}S^2 = 30^2 + 10^2$$

$$^{T}S = 32$$

Analytical Measurement Uncertainty

Accurate
Laboratory
Testing
Non-Representative
Field
Sampling

U BAD DATA U

BAD DECISION

Data Comparability Problems and Solutions

- Systemic Failure to Capture the Magnitude of Data Variability
- Generic Data Sets Poorly Matched to Decision-Making Needs
- Distinguish Between
 Analytical Quality and Data
 Quality
- Include Uncertainty
 Estimation in Data
 Reporting and Uncertainty
 Management in Decision-Making

Total Study Variability: Hierarchy of Components

Sampling and Testing Components

CYCLE PATTERN ERROR

TREND PATTERN ERROR

LARGE-SCALE VARIABILITY

FUNDAMENTAL ERROR

GROUPING/SEGREGATION ERROR

DELIMITATION ERROR

EXTRACTION ERROR

PHYSICAL PREPARATION ERROR

MATRIX INTERFERENCE ERROR

CHEMICAL PREPARATION ERROR

INSTRUMENTAL ANALYSIS ERROR

SMALL-SCALE VARIABILITY

MATERIALZATION ERROR

ANALYTICAL ERROR

15

Large-scale

Small-scale

Materialization

ANALYTICAL

MATRIX SAMPLE

Large-scale

Small-scale

MATERIALIZATION

ANALYTICAL

SPLIT SAMPLE

Large-scale

SMALL-SCALE

CO-LOCATED SAMPLE

MATERIALIZATION

ANALYTICAL

LARGE-SCALE

ROUTINE FIELD SAMPLE

SMALL-SCALE

MATERIALIZATION

ANALYTICAL

Multiple Increment Sampling

Fully-Nested Hierarchical Design

QC-based Nested Analytical Measurement Uncertainty

Page 1

What are the analyte/matrix/technology?

Copper in Wastewater by ICP

Enter 20 replicate results for the following quality control samples as percent deviation (%):

- ICS Instrument calibration standard
- ICV Second source calibration verification standard

101.1

- LCS Laboratory control sample
- MIS Matrix interference sample (matrix spike, organic surrogate, radiochemical tracer)
- FDS Field-split duplicate sample
- **CLS Co-located duplicate sample**

	ICS	ICV	LCS	MIS	FDS	CLS
	1.1	0.5	4.0	12.0	0.0	0.0
	0.8	0.1	0.5	1.4	0.0	0.0
	0.4	1.0	1.5	8.0	0.0	0.0
	2.0	1.2	1.7	3.7	0.0	0.0
	1.0	0.2	0.1	12.0	0.0	0.0
	1.2	0.4	2.2	0.4	0.0	0.0
	1.7	1.2	0.4	3.6	0.0	0.0
	3.7	0.9	0.3	0.1	0.0	0.0
	1.1	0.1	0.5	2.7	0.0	0.0
	3.1	1.3	15.0	17.0	0.0	0.0
	2.0	0.9	20.0	30.0	0.0	0.0
	0.7	1.0	0.4	3.7	0.0	0.0
	0.4	2.0	4.0	1.5	0.0	0.0
	0.9	0.2	0.6	5.0	0.0	0.0
	1.4	1.0	1.5	1.4	0.0	0.0
	1.9	1.4	5.0	20.0	0.0	0.0
	2.0	1.5	24.0	3.5	0.0	0.0
	1.5	1.7	3.0	5.0	0.0	0.0
	1.6	3.0	13.0	-24.0	0.0	0.0
	1.1	3.1	11.0	-13.0	0.0	0.0
ev.	0.84	0.85	7.2	11.1	0.0	0.0
	1.5	1.1	5.4	4.7		

104.7

105.4

Std. Dev

Bias

Recovery

101.5

What is the analytical measurement result?

10

What are the analytical measurement units?

mg/L

```
If the sample measurement is 10 mg/L , then the uncertainty interval is 7.7 - 12.3 mg/L at the 95 % Confidence Level (Expanded Uncertainty)
```

For the above result, if the systematic measurement error (bias) is corrected, and the corrected measurement is 9.5 mg/L , then the uncertainty interval is 7.3 - 11.7 mg/L at the 95 % Confidence Level (Expanded Uncertainty)

Perchlorates

- Clean Water Analytical Measurement Variability
 - → RSD_{95%} 11.6%
 - Independent of the Matrix
 - Laboratory Control Sample
- Real World Matrix Analytical Measurement Variability
 - → RSD_{95%} 26.9%
 - Affected by Matrix Interferences
- QC-based Nested Approach
 - Matrix Interference Effect

MIE =
$$(26.9\% ^{2} - 11.6\% ^{2})^{1/2}$$

MIE = 24.3%

Chemical Oxygen Demand PMBS Pilot Study

- Initial MQOs Based on Manufacture's Suggestion
 - Precision: +/- 10% Relative Standard Deviation
 - Accuracy: 90-110% Recovery of Spiked Samples
- Recoveries For Both Methods in Reagent Water Acceptable
- Recoveries For Both Methods in Matrices of Interest Unacceptable
- Initial MQOs Unachievable
- New Accuracy (Bias) MQO
 - Accuracy: 80-120% Recovery of Spiked Samples

Matrix Effects

- Modified MQOs
 - Precision: +/-20% Relative Standard Deviation
 - Accuracy: 80-120% Recovery of Spiked Samples
 - Objectives Based on Wastewater and Other Regulatory Programs
- Method 8000 (Approved)
 - 4 of 8 Labs Achieved MQOs in Wastewater Matrix
- Method 10125 (New)
 - 3 of 8 Labs Achieved MQOs in Wastewater Matrix

Cyclic Data

- Seasonal/Diurnal Data
- Long-Term Study Data Distribution is Sine Wave
- Analyze U-shaped Distributions as Two Separate Distributions
- Separate "Wet Season" Data from "Dry Season" Data

Data Below the Quantification Limit

- A Single Test Measurement Below the Quantification Limit Cannot be Used to Make a Decision
 - Average of Replicate Measurements
 Can Be Used to Make Decisions
- Random Errors Average Out to Zero
 - Random Errors for Replicate
 Measurements Cancel One Another Out

Data Below the Detection Limit

- A Single Non Detect Cannot be Used to Make a Decision
- Measurement Below Detection Limit Are Censored
- Environmental Data is Usually
 Observed to be Positively Skewed
- Maximum Uncertainty Associated with the Average Measurement Can be Modeled by an Exponential Distribution

Example of Estimating Average Concentration From Censored Data

- Mean Can be Calculated From 99% Confidence Level Associated With the Method Detection Limit (MDL)
- → MDL = 10 ppb
- Mean = 10 ppb/[ln(1-0.99)]
- Mean = 2 ppb

$$\mu = \frac{-X_q}{\ln(1-q)}$$

Summary

- Water Monitoring Decision-Making Requires Managing Data and Decision Uncertainty
- Quantitative and Qualitative Data Requires Different Approaches to Managing Decision Uncertainty
- Estimation of Data and Decision Uncertainties Enables the Decision-Maker to Compare Data and Make Quality Decisions

Further Information:

Bill Ingersoll
NAVSEA 04XQ (Labs)
843-764-7337
DSN: 794-7337
ingersollws@navsea.navy.mil
www.navylabs.navy.mil